
 with effect from 2024-25

SCHEME OF INSTRUCTION AND EXAMINATION
B. E – Honors

Code

Course Title

Scheme of

Instruction Contact

Hrs/Wk

Scheme of

Examination
Credits

To be

offered

Semester
L T P Hrs CIE SEE

Theory

HR501CS

Fundamentals of Data

Engineering

3 0 - 3 3 40 60 3 V

HR601CS

Complexity Theory
3 0 - 3 3 40 60 3 VI

HR602CS

Formal Methods and

Program Analysis

3 0 - 3 3 40 60 3 VI

HR701CS

Advanced Operating

Systems

3 0 - 3 3 40 60 3 VII

HR702CS

Systems Design
3 0 - 3 3 40 60 3 VII

HR801CS

Applied Cryptography

3 0 - 3 3 40 60 3 VIII

 18 0 - 18 18 240 360 18

 with effect from 2024-25

HR501CS Fundamentals of Data Engineering

Prerequisites Database Management
Systems

L T P C

3 0 0 3

Evaluation CIE 40 Marks SEE 60 Marks

Course Objectives:

1. Understand the Role of Data Engineering in Modern Organizations

2. Design Scalable and Reliable Data Architectures

3. Select and Implement Appropriate Technologies Across the Data Engineering

Lifecycle

4. Optimize Data Storage and Ingestion Techniques

Course Outcomes - At the end of the course students should be able to

1. Demonstrate a comprehensive understanding of the data engineering lifecycle,

encompassing essential skills, activities, and the roles of a data engineer in modern

business settings.

2. Design and assess scalable and reliable data architectures that integrate modern data

platforms like data lakes and warehouses.

3. Utilize decision-making skills to select optimal technologies and frameworks based on

team capabilities, performance, cost, and interoperability across the data engineering

lifecycle.

4. Implement effective data storage solutions by applying knowledge of distributed

storage, partitioning, data retention, and modern storage architectures such as data

lakehouses and stream-to-batch systems.

5. Build and manage data ingestion pipelines that handle both bounded and unbounded

data while ensuring scalability, data integrity, and reliability through techniques like

ETL, change data capture, and message queues.

Unit-1
Data Engineering Described : Definition, Lifecycle, Evolution of the Data Engineer, Data

Engineering and Data Science , Data Engineering Skills and Activities, Data Maturity and the

Data Engineer, The Background and Skills of a Data Engineer, Business Responsibilities ,

Technical Responsibilities, The Continuum of Data Engineering Roles, from A to B , Data

Engineers Inside an Organization, Internal-Facing Versus External-Facing Data Engineers,

Data Engineers and Other Technical Roles, Data Engineers and Business Leadership.

The Data Engineering Lifecycle: The Data Lifecycle Versus the Data Engineering

Lifecycle, Generation: Source Systems, Storage, Ingestion, Transformation, Serving Data,

Major Undercurrents Across the Data Engineering Lifecycle, Security, Data Management,

DataOps, Data Architecture, Orchestration, Software Engineering.

 with effect from 2024-25

Unit- 2

Designing Good Data Architecture: What Is Data Architecture, Enterprise Architecture

Defined, Data Architecture Defined, “Good” Data Architecture, Principles of Good Data

Architecture, Major Architecture Concepts.

Domains and Services, Distributed Systems, Scalability, and Designing for Failure, Tight

Versus Loose Coupling: Tiers, Monoliths, and Microservices, User Access: Single Versus

Multitenant, Event-Driven Architecture,

Brownfield Versus Greenfield Projects, Examples and Types of Data Architecture, Data

Warehouse, Data Lake, Convergence, Next-Generation Data Lakes, and the Data Platform,

Modern Data Stack, Lambda Architecture, Kappa Architecture, The Dataflow Model and

Unified Batch and Streaming, Architecture for IoT, Data Mesh, Other Data Architecture

Examples, Who’s Involved with Designing a Data Architecture.

Unit- 3

Choosing Technologies Across the Data Engineering Lifecycle: Team Size and

Capabilities, Speed to Market, Interoperability, Cost Optimization and Business Value, Total

Cost of Ownership, Total Opportunity Cost of Ownership, FinOps, Optimization,

Performance, and the Benchmark Wars.

Data Generation in Source Systems: Sources of Data: How Is Data Created? Source

Systems: Main Ideas, Files and Unstructured Data, APIs, Application Databases (OLTP

Systems), Online Analytical Processing System, Change Data Capture, Logs, Database Logs,

CRUD, Insert-Only.

Messages and Streams, Types of Time, Source System Practical Details, Databases, APIs,

Data Sharing, Third-Party Data Sources, Message Queues and Event-Streaming Platforms,

Undercurrents and Their Impact on Source Systems, Security, Data Management, DataOps,

Data Architecture, Orchestration, Software Engineering.

Unit -4

Storage: Data Storage Systems, Single Machine Versus Distributed Storage, Eventual Versus

Strong Consistency, Cache and Memory-Based Storage Systems, The Hadoop Distributed

File System, Streaming Storage, Indexes, Partitioning, and Clustering, Data Engineering

Storage Abstractions, The Data Warehouse, The Data Lake, The Data Lakehouse, Data

Platforms.

Stream-to-Batch Storage Architecture, Big Ideas and Trends in Storage, Data Catalog, Data

Sharing, Schema, Separation of Compute from Storage, Data Storage Lifecycle and Data

Retention, Single-Tenant Versus Multitenant Storage

 with effect from 2024-25

Unit- 5

Ingestion: What Is Data Ingestion, Key Engineering Considerations for the Ingestion Phase,

Bounded Versus Unbounded Data, Frequency, Synchronous Versus Asynchronous Ingestion,

Serialization and Deserialization, Throughput and Scalability, Reliability and Durability,

Payload, Push Versus Pull Versus Poll Patterns, Batch Ingestion Considerations, Snapshot or

Differential Extraction, File-Based Export and Ingestion, ETL Versus ELT

Inserts, Updates, and Batch Size, Data Migration, Message and Stream Ingestion

Considerations, Schema Evolution, Late-Arriving Data, Ordering and Multiple Delivery,

Replay, Time to Live, Message Size, Error Handling and Dead-Letter Queues, Consumer Pull

and Push, Location, Ways to Ingest Data, Direct Database Connection, Change Data Capture,

APIs, Message Queues and Event-Streaming Platforms, Managed Data Connectors, Moving

Data with Object Storage, EDI, Databases and File Export.

Suggested Readings:

1. Joe Reis and Matt Housley, Fundamentals of Data Engineering Plan and Build Robust

Data Systems, Published by O’Reilly Media, Inc., July 2022: First Edition.

2. Paul Crickard, Data Engineering with Python: Work with massive datasets to design data

models and automate data pipelines using Python, Kindle Edition Packt Publishers.

 with effect from 2024-25

HR601CS Complexity Theory

Prerequisites Discrete Mathematics L T P C

3 0 0 3

Evaluation CIE 40 Marks SEE 60 Marks

Course Objectives

1. The aim is to help the student to understand the modern and advanced concepts in

computational complexity theory.

2. The course will explain measures of the complexity of problems and of algorithms,

based on time and space used on abstract models.

3. Important complexity classes will be defined, and the notion of completeness

established through a thorough study of NP-completeness.

4. Applications to cryptography will be considered.

Course Outcomes - At the end of the course students should be able to

1. Analyse practical problems and classify them according to their complexity;

2. Familiar with the phenomenon of NP-completeness, and be able to identify

problems that are NP-complete;

3. Aware of a variety of complexity classes and their interrelationships;

4. Understand the role of complexity theory in cryptography and quantum computing

Unit- 1

Algorithms and problems. Complexity of algorithms and of problems. Lower and upper

bounds. Examples: sorting and travelling salesman.

Time and space. Models of computation and measures of complexity. Time and space

complexity on a Turing machine. Decidability and complexity

.

Unit -2

Time complexity. Time complexity classes. Polynomial time problems and algorithms.

Problems on numbers, graphs and formulas.

Non-determinism. Non-deterministic machines. The complexity class NP and its various

characterizations. Non-deterministic algorithms for satisfiability and other problems in NP.

Unit -3

NP-completeness. Reductions and completeness. NP-completeness of satisfiability.

More NP-complete problems. Graph-theoretic problems. Independent set, clique and 3-

colourability.

More NP-complete problems. Sets, numbers and scheduling. Matching, set covering and

knapsack.

 with effect from 2024-25

Unit- 4

coNP. Validity of boolean formulae and its completeness. NP ∩ coNP. Primality and

factorisation.

Cryptographic complexity. One-way functions. The class UP.

Unit -5

Space complexity. Deterministic and non-deterministic space complexity classes. The

reachability method. Savitch’s theorem.

Hierarchy. The time and space hierarchy theorems and complete problems.

Quantum Complexity. The classes BQP and QMA

.

Suggested Reading:

1. Computational Complexity: A Modern Approach by Arora and Barak

2. Computational Complexity: A Conceptual Perspective by Oded Goldreich

3. Mathematics and Computation by Avi Wigderson

http://theory.cs.princeton.edu/complexity/
https://www.wisdom.weizmann.ac.il/~/oded/cc-book.html
https://www.math.ias.edu/avi/book

 with effect from 2024-25

HR602CS
Formal Methods and Program Analysis

Prerequisites Theory of Computation L T P C

3 0 0 3

Evaluation CIE 40 Marks SEE 60 Marks

Course Objectives

1. Understand and apply formal logic and proof techniques to reason about the

correctness and properties of software systems, including methods for verification

and validation.

2. Analyze and model computational systems using formal methods such as automata

theory, state machines, and process algebra to ensure system reliability and

correctness.

3. Implement and evaluate software verification techniques using formal specification

languages and model checking to detect and address potential errors in software

systems.

4. Explore and apply program analysis techniques including static and dynamic

analysis, data flow analysis, and symbolic execution to improve software quality

and performance.

Course Outcomes - At the end of the course students should be able to

1. Explain the basic concepts of formal methods and logic, and use formal proof

techniques to reason about software correctness.

2. Develop formal specifications for software systems and use verification techniques

to ensure these systems meet their specifications.

3. Apply model checking tools to automatically verify the correctness of software

systems and detect potential errors.

4. Perform static and dynamic analysis on software to identify potential issues and

optimize performance.

5. Explore and apply advanced formal methods and program analysis techniques to

complex systems, including security and reliability concerns.

Unit-1

Overview of Formal Methods: Definitions, importance, and applications in software

engineering.

Mathematical Foundations: Logic, set theory, and proof techniques.

Specification Languages: Introduction to specification languages such as Z, B, and VDM.

Formal Verification: Basics of formal verification, theorem proving, and model checking.

Case Studies: Real-world examples where formal methods have been successfully applied.

Unit-2

Propositional Logic: Syntax, semantics, and inference rules.

Predicate Logic: Quantifiers, theories, and inference rules.

Proof Techniques: Direct proof, proof by contradiction, induction, and the use of automated

theorem provers.

Formal Proof Systems: Natural deduction, sequent calculus, and tableaux methods.

Applications in Program Verification: Using logic for reasoning about program

 with effect from 2024-25

correctness.

Unit-3

Finite State Machines (FSMs): Definition, types, and state transition diagrams.

Petri Nets: Basic concepts, modeling, and analysis.

Automata Theory: Deterministic and non-deterministic automata, and their applications in

verification.

Temporal Logic: Linear Temporal Logic (LTL) and Computational Tree Logic (CTL).

Model Checking: Techniques and tools for verifying finite-state systems.

Unit-4

Static Analysis: Techniques for analyzing code without executing it, including abstract

interpretation and data flow analysis.

Dynamic Analysis: Techniques for analyzing code during execution, including runtime

monitoring and debugging.

Formal Verification of Programs: Using formal methods to prove the correctness of

algorithms and software.

Symbolic Execution: Techniques for exploring program paths and detecting errors.

Applications and Tools: Introduction to tools and frameworks for program analysis and

verification.

Unit-5

Concurrency and Parallelism: Formal methods for reasoning about concurrent and parallel

systems.

Security and Privacy: Using formal methods to analyze and ensure software security and

privacy.

Hybrid Systems: Formal methods for systems with both discrete and continuous

components.

Quantitative Verification: Techniques for analyzing systems with quantitative properties

like performance and reliability.

Emerging Trends: Recent developments and future directions in formal methods and

program analysis.

Suggested Reading:

1. C. A. R. Hoare and He Jifeng, Formal Methods: An Introduction, 1st Edition, Prentice

Hall

2. Michael Sipser, Introduction to the Theory of Computation, 3rd Edition, Cengage

Learning

3. N. Shroff and R. D. D. Souza, Software Verification and Analysis: Engineering for

Qualities, 1st Edition, Springer

4. Christel Baier and Joost-Pieter Katoen, Principles of Model Checking, 1st Edition, MIT

Press

 with effect from 2024-25

HR701CS Advanced Operating Systems

Prerequisites Operating Systems L T P C

3 0 0 3

Evaluation CIE 40 Marks SEE 60 Marks

Course Objectives

1. Understand global view of distributed operating systems and provides theoretical

foundation for distributed systems.

2. Study the characteristics of OS for Multiprocessor and Multicomputer.

3. Learn the issues related to designing OS.

4. Understand Security & protection in computer systems and mechanisms used in

building multiprocessor operating systems.

5. Explore management of different resources in distributed systems.

Course Outcomes - At the end of the course students should be able to

1. Understand the concept of distributed system and foundations.

2. Familiarize with advanced paradigms, architectures & protocols necessary in solve

the challenges in design of advanced operating systems.

3. Analysis of efficiency and proofs of correctness for multiple aspects in design of

Advanced Operating Systems

Unit-1

Architecture of Distributed Systems: Types, Distributed Operating System, Issues in

Distributed Operating Systems, Theoretical Foundations: Global Clock, Lamport's Logical

Clock, Vector Clocks, Global State, and Termination Detection.

Unit -2

Distributed Mutual Exclusion: Classification, requirement, performance, non-token-based

algorithms, Lamport's algorithm, the Richart-Agarwala algorithm, token-based algorithm

Suzuki liasamil's broadcast algorithm, Singhals heuristic algorithm.

Deadlock Detection: Resource Vs Communication deadlock, A graph- theoretic model,

prevention, avoidance, detection, control organization, centralized deadlock-detection

algorithm, the completely centralized algorithm, the HO-Ramamoorthy algorithm.

Distributed deadlock detection algorithm - path - pushing, edge-chasing, hierarchical

deadlock detection algorithm, menace-muntz and Ho-Ramamoorthy algorithm. Agreement

Protocols: The system model, the Byzantine agreement, and the consensus problem.

Unit -3

Distributed File System: Mechanisms, Design Issues - Andrew File System. Design and

implementation of a log structured file system.

Distributed Shared Memory: Algorithms for Implementing DSM, Memory Coherence,

Coherence Protocols, Design Issues.

Distributed Scheduling: Issues in Load Distribution, Components of Algorithm, Stability

 with effect from 2024-25

Load Distributing Algorithm, Performance.

Unit -4

Failure Recovery: Backward, Forward Error Recovery in Concurrent Systems, Consistent

Set of Check Points, Synchronous and Asynchronous Check Pointing and Recovery.

Fault Tolerance: Commit Protocols, Non-Blocking Commit Protocols, Voting Protocols.

 Protection and Security: Access Matrix, Private Key, Public key, and Kerberos System.

Unit -5

Multiprocessor Operating Systems: Motivation, Basic Multiprocessor System

Architecture, Interconnection Networks for Multiprocessor Systems, Caching, Hypercube

Architecture. Threads, Process Synchronization, Processor Scheduling, and Memory

Management.

 Database Operating System: Concurrence Control, Distributed Databases, and

Concurrency Control Algorithms.

Suggested Reading:

1. Singhal M, Shivaratri N.G, Advanced Concepts in Operating Systems, McGraw-Hill Intl.,

1994.

2. Pradeep K Sinha, Distributed Operating Systems Concepts and Design, PHI, First

Edition, 2002.

3. Andrew S. Tanenbaum, Distributed Operating Systems, Pearson Education India, First

Edition, 2011.

 with effect from 2024-25

HR702CS Systems Design

Prerequisites Data Structures and
Algorithms

L T P C

3 0 0 3

Evaluation CIE 40 Marks SEE 60 Marks

Course Objectives

1. Develop a comprehensive understanding of system design principles to create

scalable, reliable, and maintainable architectures for modern computing

environments.

2. Apply design patterns and architectural strategies to address complex system

requirements, including fault tolerance, high availability, and performance

optimization.

3. Analyze and evaluate various system components such as databases, distributed

systems, and cloud infrastructure, to make informed decisions on technology

selection and system integration.

4. Design and implement effective solutions for real-world problems in system design,

incorporating best practices in scalability, security, and performance.

Course Outcomes - At the end of the course students should be able to

1. Understand the core principles and methodologies of system design to create

scalable and efficient architectures.

2. Apply design patterns and principles to solve common system design problems and

improve code maintainability.

3. Design and manage relational and non-relational databases to optimize performance

and ensure data integrity.

4. Develop strategies for building and managing distributed systems to enhance

scalability and fault tolerance.

5. Implement cloud-based solutions and modern architectural patterns to address

current challenges in system design and deployment.

Unit-1

Overview of System Design: Importance, goals, and challenges in designing scalable and

efficient systems.

Design Principles: SOLID Principles, Modularization, abstraction, separation of concerns,

and design trade-offs.

System Architecture: Client-server architecture, microservices, service-oriented architecture

(SOA), and monolithic systems.

Design Patterns: Common design patterns such as Singleton, Factory, Observer, and MVC.

Software Development Lifecycle: Requirements gathering, design, development, and

testing.

Case Studies: Design analysis of popular systems like Facebook, Google, and Amazon.

 with effect from 2024-25

Unit-2

Scalability Concepts: Horizontal vs. vertical scaling, load balancing, partitioning, and

sharding.

Performance Optimization: Latency, throughput, and optimizing response time.

Caching Strategies: Client-side, server-side, distributed caching, and cache invalidation

policies.

Database Scalability: NoSQL vs. SQL databases, database partitioning, and indexing.

Message Queuing and Event-Driven Architecture: Use of message brokers (RabbitMQ,

Kafka) for decoupling components.

Content Delivery Networks (CDN): Using CDNs for optimizing content distribution.

Unit-3

Introduction to Distributed Systems: Characteristics and challenges, CAP theorem,

consistency models.

Data Replication and Synchronization: Replication strategies, eventual consistency, and

conflict resolution.

Consensus Algorithms: Paxos, Raft, and Byzantine Fault Tolerance.

Distributed Databases: Understanding distributed databases (Cassandra, MongoDB), and

their trade-offs.

Fault Tolerance and High Availability: Techniques for achieving high availability,

failover, and redundancy.

Case Studies: Distributed systems design in companies like Google (Bigtable, Spanner) and

Amazon (DynamoDB).

Unit-4

Security Principles in System Design: Confidentiality, integrity, availability, and

authentication methods.

Data Security: Encryption (AES, RSA), data privacy, and handling sensitive information.

Authentication and Authorization: OAuth, JWT, SSO, and RBAC (Role-Based Access

Control).

Reliability and Redundancy: Designing reliable systems, backup strategies, disaster

recovery, and replication.

Monitoring and Observability: Log management, distributed tracing, and health checks.

Security Design Case Studies: Security challenges and solutions in real-world systems (e.g.,

Payment gateways, secure messaging apps).

Unit-5

Real-World System Design Case Studies: Design analysis of large-scale systems like

Netflix, Uber, and Twitter.

Advanced Design Patterns: Event sourcing, CQRS, Circuit Breaker, and Bulkhead patterns.

Designing for DevOps: Continuous integration (CI), continuous deployment (CD),

infrastructure as code, and containerization (Docker, Kubernetes).

Cloud-Native System Design: Designing systems for cloud platforms (AWS, Azure, GCP),

serverless architectures.

Emerging Trends: Edge computing, 5G, and the impact on system design.

Ethical and Sustainable System Design: Designing energy-efficient systems and

understanding ethical considerations in system design.

 with effect from 2024-25

Suggested Reading:

1. Clean Architecture: A Craftsman's Guide to Software Structure and Design

 Robert C. Martin, 2017

2. Martin Kleppmann, Designing Data-Intensive Applications, 1st Edition, O’Reilly Media

3. Martin L. Abbott, Michael T. Fisher, The Art of Scalability: Scalable Web Architecture,

Processes, and Organizations for the Modern Enterprise, 2nd Edition, Addison-Wesley

Professional

4. Martin Fowler, Patterns of Enterprise Application Architecture, 1st Edition, Addison-

Wesley Professional

5. Niall Richard Murphy, Betsy Beyer, Chris Jones, and Jennifer Petoff, Site Reliability

Engineering: How Google Runs Production Systems, 1st Edition, O'Reilly Media

 with effect from 2024-25

HR801CS Applied Cryptography

Prerequisites Discrete Mathematics L T P C

3 0 0 3

Evaluation CIE 40 Marks SEE 60 Marks

Course Objectives

1. Develop a strong understanding of cryptographic principles and their mathematical

foundations

2. Master symmetric and asymmetric cryptography methods

3. Learn to apply cryptographic hash functions and authentication protocols

4. Explore advanced cryptography topics and emerging trends

Course Outcomes - At the end of the course students should be able to

1. Understand cryptography's principles, history, and foundational mathematics used

in modern encryption.

2. Analyze and implement symmetric encryption methods, considering operational

modes and security practices.

3. Gain knowledge of public key cryptography, including key exchange and digital

signatures for secure communication.

4. Apply hash functions and authentication techniques to ensure data integrity and

secure verification.

5. Explore advanced cryptographic methods, including post-quantum encryption,

blockchain, and IoT security solutions.

Unit-1

Introduction to Cryptography: History and evolution of cryptography, Cryptographic

goals: Confidentiality, Integrity, Authentication, Non-repudiation, Types of cryptography:

Symmetric and Asymmetric Cryptography, Cryptographic protocols and their applications

Classical Cryptography: Caesar Cipher, Vigenère Cipher, Playfair Cipher, Substitution and

Transposition Techniques, Limitations of classical cryptography

Mathematical Foundations: Modular arithmetic, GCD, Fermat’s Theorem, Euler’s

Theorem, Primes, Factorization, and Discrete Logarithms, Finite fields and algebraic

structures used in cryptography

 with effect from 2024-25

Unit-2

Block Ciphers: DES (Data Encryption Standard): Structure, Strengths, and Weaknesses,

Triple DES, Advanced Encryption Standard (AES), Modes of operation: ECB, CBC, CFB,

OFB, and CTR

Stream Ciphers:RC4, Salsa20, and ChaCha stream ciphers, Overview of LFSRs (Linear

Feedback Shift Registers) in stream ciphers

Symmetric Key Algorithms and Security: Key Distribution and Management, Random

Number Generators and their significance in cryptography, Attacks on symmetric

cryptosystems: Brute Force, Differential, and Linear Cryptanalysis.

Unit-3

 Introduction to Public Key Cryptography: Principles of asymmetric encryption, RSA

Algorithm: Key generation, encryption, and decryption, Diffie-Hellman Key Exchange

Protocol

Elliptic Curve Cryptography (ECC): Basics of elliptic curves and their application in

cryptography, Elliptic Curve Digital Signature Algorithm (ECDSA)

Digital Signatures and Certificates: Digital signatures: DSA (Digital Signature Algorithm),

RSA-based signatures, Certificate Authorities (CA) and Public Key Infrastructure (PKI),

X.509 certificates and certificate validation.

Unit-4

Hash Functions: Properties of cryptographic hash functions: Collision resistance, Pre-image

resistance, and Second pre-image resistance, MD5, SHA-1, SHA-256, SHA-3 algorithms,

HMAC (Hashed Message Authentication Code)

Message Integrity and Authentication: MAC (Message Authentication Codes) and CMAC

(Cipher-based MAC), Authentication protocols: Challenge-Response, Zero-Knowledge

Proofs

Password-based Cryptography: Salted Hashes, Key Stretching (PBKDF2, bcrypt, Argon2),

Password Authentication Mechanisms.

 with effect from 2024-25

Unit-5

Post-Quantum Cryptography: Threats posed by quantum computing to classical

cryptosystems, Overview of quantum-resistant algorithms: Lattice-based, Hash-based,

Multivariate polynomial cryptography

Blockchain and Cryptography: Cryptographic concepts in blockchain: Hashing, Digital

signatures, Merkle trees, Bitcoin and Ethereum cryptographic foundations

Cryptanalysis and Security Protocols: Side-channel attacks: Timing attacks, Power

analysis, Attacks on cryptographic algorithms: Man-in-the-Middle, Replay, and Chosen

Ciphertext Attacks

Current Trends and Applications: Homomorphic encryption, Secure Multi-Party

Computation (SMPC), Zero-Knowledge Proofs in privacy-preserving applications,
Lightweight cryptography for IoT devices

Suggested Reading:

1. Cryptography and Network Security: Principles and Practice by William Stallings, 7th

Edition, Pearson Pub.

2. Applied Cryptography: Protocols, Algorithms, and Source Code in C by Bruce Schneier,

2nd Edition, Wiley Pub.

3. Introduction to Modern Cryptography: Principles and Protocols by Jonathan Katz and

Yehuda Lindell, 2nd Edition, CRC Press

4. Understanding Cryptography: A Textbook for Students and Practitioners by Christof Paar

and Jan Pelzl, 1st Edition, Springer

